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Geometry of dynamics and phase transitions in classical latticew4 theories
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We perform a microcanonical study of classical latticew4 field models in three dimensions with O(n)
symmetries. The Hamiltonian flows associated with these systems that undergo a second-order phase transition
in the thermodynamic limit are investigated here. The microscopic Hamiltonian dynamics neatly reveals the
presence of a phase transition through the time averages of conventional thermodynamical observables. More-
over, peculiar behaviors of the largest Lyapounov exponents at the transition point are observed. A Riemannian
geometrization of Hamiltonian dynamics is then used to introduce other relevant observables, which are
measured as functions of both energy density and temperature. On the basis of a simple and abstract geometric
model, we suggest that the apparently singular behavior of these geometric observables might probe a major
topological change of the manifolds whose geodesics are the natural motions.@S1063-651X~98!04104-X#
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I. INTRODUCTION

The general problem of the relevance of microscopic
namics to the statistical behavior of physical systems d
back to Boltzmann’s ideas at the very beginning of statist
mechanics and is still far from being clarified and solve
Within this framework, one can extract a less general but
challenging question, i.e., whether the microscopic Ham
tonian dynamics displays some relevant change whe
given system undergoes a phase transition.

Studying microscopic Hamiltonian dynamics means th
instead of usingensemblestatistical averages, one nume
cally computestime averages of the relevant observable
There are two main reasons for so doing:~i! There exist
interesting observables that are intrinsically dynamical, a
the case of Lyapounov exponents, and~ii ! through a
differential-geometric description of the dynamics, based
simple tools of Riemannian geometry, different concepts
methods come to enrich the standard approaches to the s
of phase transitions, hinting at a possibly deeper charac
ization of their very nature from the standpoint of the ma
ematical structures involved.

The geometric formulation of the dynamics of man
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degrees-of-freedom systems was used by Krylov in his p
neering studies on the dynamical foundations of statist
mechanics@1#. Then, during the past two decades, there ha
been some attempts to cope with the ergodicity of Ham
tonian systems through a geometric theory of dynamics@2#.
A more recent series of papers@3–8#, instead of dealing with
ergodicity, successfully address the problem of explain
and quantifying Hamiltonian chaos within a geomet
framework where natural motions are seen as geodesics
suitable Riemannian manifold~henceforth referred to a
‘‘mechanical manifold’’!. Here chaotic dynamics stems from
curvature fluctuations along the geodesics, through a me
nism similar to the parametric destabilization of the sta
orbits of a pendulum. At variance with a widespread beli
negative curvatures do not appear essential to produce ch
Positive and fluctuating curvatures can work as well. A ve
interesting point is that the average degree of instability
the dynamics is given in terms of curvature-related quanti
integrated over the whole mechanical manifold. This est
lishes a link between adynamicalaspect of a given system
the stability or instability of its trajectories, and someglobal
geometricproperties of its associated mechanical manifol

Now, when a model system displays a phase transitio
natural question arises: What kind of relationship exists
any, between all the well-known major thermodynam
changes occurring at the transition point and the mentio
global geometric characteristics of the mechanical ma
folds? The present work actually shows that a second-o
phase transition appears to be associated with an ab
change in the global geometry, and possibly in the topolo
as we conjecture, of the mechanical manifolds.

The above problem is addressed in the present work
studying the dynamics of classical field theories, discretiz
on a lattice. A classical lattice field theory can be regarded
a discrete classical dynamical system. In particular, we s
consider the classicalw4 theory, whose lattice version is a s
of coupled nonlinear oscillators.

:

-
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57 3887GEOMETRY OF DYNAMICS AND PHASE TRANSITIONS . . .
Equilibrium phase transitions are usually studied in
framework of the Gibbsian canonical ensemble. Dynam
when it is considered, is introduced onlya posteriori: The
most common procedure is to describe it by means of n
deterministic equations, usually of the Langevin type, wh
limiting probability distribution is the Boltzmann weigh
exp(2H/T), whereH is the Hamiltonian of the system. Her
we are going to adopt a completely different approach,
from the very beginning we consider the determinis
Hamiltonian dynamics, without making explicit assumptio
on the equilibrium properties of the system and we obse
how the phase transition is signaled by the dynamics.
rigorous grounds, one cannot be sure that a phase trans
exists in a system studied through its Hamiltonian dynam
because there is no proof of the fact that the dynamic
ergodic. Moreover, even assuming that it is ergodic, the
godic measure will be the microcanonical rather than
canonical one. The two ensembles are equivalent only in
thermodynamic limit, thus the phenomenology observed
finite systems, as the systems considered in numerical s
lations necessarily are, might be different. To give only
example, let us consider the phenomenon ofergodicity
breaking, i.e., the fact that ergodicity is not valid for th
whole phase space but only for disjoint subsets of it. Suc
phenomenon is indeed closely related to phase transition
fact, when it occurs it entails a symmetry breaking, as
usual phase transitions. However, ergodicity breaking i
more general concept than symmetry breaking; in fact, i
also at the origin of those phase transitions that do not
respond to the breaking of an evident symmetry of
Hamiltonian ~for example, in spin glasses! @9–11#. In the
canonical ensemble, ergodicity can be broken only in
thermodynamic limit@12#, while in the microcanonical en
semble, in principle, there might be ergodicity breaking a
in finite systems. Since ergodicity is a dynamical prope
we think that a dynamical approach is particularly approp
ate to study such a phenomenon.

It is worth mentioning here that ergodicity breaking
classical Hamiltonian systems can be related to supersym
try breaking @13#; this relation is estabilished within th
framework of a path-integral formulation of classical m
chanics, where the bosonic sector of a supersymmetric
grangian is given by a suitable function of the canoni
coordinates, obeying standard Hamilton equations, and
fermionic sector contains ghost fields that, rather surp
ingly, obey the Jacobi equation describing the stability
classical paths@14,15#. In this framework the spontaneou
symmetry breaking can occur also at a finite volume@13#.

Our results show that, as far as the latticew4 models
considered are concerned, the numerical phenomenol
obtained by simulating Hamiltonian dynamics, is perfec
consistent with the expectations based on equilibrium sta
tical mechanics. Moreover, we investigate whether the in
bility of dynamical trajectories, measured by Lyapounov e
ponents, is sensitive to the phenomenon of the ph
transition@16#. In the light of the geometrization of dynam
ics, Lyapounov exponents are also seen as probes of
hidden geometry of motion; in fact, our results suggest t
the deep origin of ergodicity breaking and of the dynami
counterpart of a phase transition could be found in a ma
change in the geometric, or even topologic, structure of
e
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mechanical manifolds underlying the dynamics.
The paper is organized as follows. In Sec. II we introdu

the models studied, we describe the numerical techniq
that we adopted, and we discuss the phenomenology of
phase transition as it emerges from the dynamics. In Sec
the main definitions and results of the Riemannian desc
tion of Hamiltonian chaos are given and the behavior of
geometric observables in our models is presented and
cussed together with an interpretation involving simple top
logical concepts. Section IV is devoted to concluding
marks.

II. MODELS AND NUMERICAL RESULTS

To study the relationship between microscopic dynam
and equilibrium phase transitions we consider Hamilton
systems of the standard type

H@w,p#5
1

2(i
p i

21V~$w i%!, ~1!

wherew i andp i are canonically conjugated coordinates a
momenta,i labels the sites of ad-dimensional cubic lattice,
andV is an interaction potential. More precisely, we consid
models that can be derived from the paradigm Hamiltoni

H@w#5E ddxH 1

2
p2~x!1J

1

2
@¹dw~x!#22

1

2
w2~x!

1
l

4
w4~x!J , ~2!

wherep(x)5dL@w,ẇ#/dẇ(x)5ẇ(x) is the canonically con-
jugated momentum density ofw(x) by discretizing it on a
lattice. By means of the substitutions

]mw~x!→
w~x1aem!2w~x!

a
, E ddx→ad(

i
, ~3!

we obtain

H@w,p#5ad(
i

F1

2
p i

21
J

2a2 (m51

d

~w i1em
2w i!

2

2
1

2
m2w i

21
l

4
w i

4G , ~4!

wherea is the lattice spacing,em is the unit vector in themth
direction of the lattice, andw i5w(xi). This system shows~at
equilibrium! a continuous phase transition with nonzero cr
cal temperature corresponding to a spontaneous breakin
the discrete O(1), or Z2, symmetry.

We have also considered the vector versions of this lat
w4 model described by the Hamiltonian
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H@w,p#5ad(
a

(
i

F1

2
~p i

a!21
J

2a2 (m51

d

~w i1em

a 2w i
a!2

2
1

2
m2~w i

a!2G1
l

4(i
F(

a
~w i

a!2G2

, ~5!

where the indexa runs from 1 ton. We have considered, in
addition ton51, n52, which is the simplest vector cas
andn54, which is the largest value ofn that allowed for a
complete numerical study with our computing resources.
n.1 the broken symmetry is a continuous one@the poten-
tials are respectively invariant under planar rotations O
and under the action of the O(4) group#. Because of the
Mermin-Wagner theorem, since the interactions are of sh
range, the O(2) and O(4) models can have a second-o
phase transition only on three-dimensional lattices.

The Hamiltonian dynamics, and thus the related dyna
cal, thermodynamical, and geometrical quantities, is stud
by molecular-dynamics simulations performed at several
ues of the energy density«5E/N, which is the relevant
physical parameter as long as our systems are in a micr
nonical ensemble.@The qualitative features of the results a
not affected if we consider the temperature~average kinetic
energy per degree of freedom! as the physical parameter.#

A. Numerical study of dynamics and thermodynamics

The canonical equations of motion

ẇ i
a5

]H

]p i
a

, ~6!

ṗ i
a52

]H

]w i
a

~7!

yield

ẇ i
a5p i

a , ṗ i
a5A (

m51

d

~w i1em

a 1w i2em

a !1Bw i
a2Ciw i

ai2w i
a ,

~8!

with

A5Jad22,

B5m2ad22Jad22d, ~9!

C5lad,

and iw i
ai25(a(w i

a)2. In order to guarantee a faithful nu
merical representation of a Hamiltonian flow, it is necess
that the algorithm updates the canonical coordina
@w i

a(nDt),p i
a(nDt)#→@w i

a$(n11)Dt%,p i
a$(n11)Dt%# by

means of a canonical, i.e., symplectic, transform. Symple
algorithms ensure the conservation of Poincare´ geometric in-
variants and in particular of phase-space volumes and en
conservation. We used a very efficient and precise th
order symplectic algorithm proposed recently@17#, keeping
the fluctuations of relative energy atDE/E.1029. All the
simulations have been performed using words of 64 bits.
r
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have always chosen random initial conditions at equipartit
among momenta in order to consider phase-space traject
stemming from initial conditions that belong to the supp
of an equilibrium measure.

Along the phase-space trajectories, worked out num
cally, the time averages of any observableA is computed as

Āt5
1

t E0

t

dtA@p~t!,w~t!#. ~10!

By means of such averages both dynamical and thermo
namical properties of the system under investigation can
determined.

One of the most relevant properties of the dynamics is
degree of instability because it is related to the efficiency
phase mixing. Let us remember that the strength of dyna
cal instability, i.e., of chaos, is measured by the larges
Lyapounov exponentl1. If we denote byM the phase space
of the system and byX a vector field on it such that

ẋi5Xi~x1, . . . ,xN! ~11!

are the equations of motion, a complete integral of this
namical system defines a one-parameter group of diffeom
phisms ofM, that is,f t:M→M. Denote by

j̇ i5J k
i @x~ t !#jk ~12!

the tangent dynamics equation, i.e., the realization of
mappingdf t:TxM→Tf t(x)M, where@J k

i # is the Jacobian
matrix of @Xi #, then the largest Lyapounov exponentl1 is
defined by

l15 lim
t→`

1

t
ln

ij~ t !i
ij~0!i ~13!

and, by settingL@x(t),j(t)#5jTJ @x(t)#j/jTj[jTj̇/jTj
5 1

2 (d/dt)ln(jTj), this can be formally expressed as a tim
average

l15 lim
t→`

1

2tE0

t

dt L@x~t!,j~t!#. ~14!

In practice, as we deal with standard Hamiltonians, the t
gent dynamics~12! can be written in the form

d2jq
i

dt2
1S ]2V

]w i]w j D
w~ t !

jq
j 50, ~15!

which, integrated along any numerical trajectory of Eqs.~8!,
makes possible the estimate ofl1 from @18#

l1~ tN!5
1

NDt (
n51

N

lnS ij~ tn!i
ij~ tn21!i D , ~16!

where $j i%5($jq
i %,$jp

i %), jp
i (t)5@jq

i (t1Dt)2jq
i (t2Dt!#/

2Dt, andtn5nDt (Dt is some time interval!. The average is
extended up to a final timetN such thatl1(tN) has attained
a bona fide asymptotic value.
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57 3889GEOMETRY OF DYNAMICS AND PHASE TRANSITIONS . . .
Concerning thermodynamic observables, temperature
basic quantity, is determined through the time average
kinetic energy per degree of freedom

1

2
T5

1

t E0

t

dtH 1

Nn(a,i

1

2
@p i

a~t!#2J , ~17!

whereN is the number of lattice sites andt is the total time
during which a phase-space trajectory is followed. T
quantity shows a fast convergence in time and is expecte
differ from its canonical counterpart by anO(1/Nn) correc-
tion.

In addition to the bifurcation of the order parameter,^w&,
at some critical value of the temperature, a second-o
phase transition is signaled by a singular temperature de
dence of the specific heat and therefore the microcanon
computation of the constant volume specific heatCV de-
serves special care. An efficient numerical method to co
pute CV is devised by inverting a general formula relatin
canonical and microcanonical averages of the squared
tuations of a generic observable@19# by applying it to the
fluctuations of kinetic energy

dK25dK 2̂2
b2

CV
S ]K̂

]b
D 2

, ~18!

whereCV5(]E/]T); the overbar and caret stand for micr
canonical and canonical averages, respectively.

The quantitydK 2̂ can be easily computed along the n
merical trajectories, whereas the analytic expressionsK̄5K̂

5N/2b anddK 2̂5N/(2b2) are readily found. By inverting
the equation above one immediately finds a formula fo
microcanonical estimate of the canonical specific heat

CV5
Nn

2

1

12~Nn/2!~dK2/K̄2!
, ~19!

which requires the numerical computation of time avera
of kinetic energy and of its squared fluctuations;Nn is the
total number of degrees of freedom.

B. Dynamical evidence of the phase transition

1. Detecting the transition: Binder cumulants

In the canonical ensemble, a phase transition may s
up only in the thermodynamic limit. As long asN is finite,
all the thermodynamic quantities are regular functions of
temperature, and ergodicity and symmetry are not brok
Nevertheless, some marks of the transition show up ne
also in a finite system. The specific heat does not diverge,
exhibits a peak, whose height grows with the size of
system, at a temperatureTc

CV(N). In principle, the order pa-
rameter is expected to vanish on the whole temperature ra
for any finite value ofN, though in practice, e.g., in a ca
nonical Monte Carlo simulation where the length of the sa
pling of w is necessarily finite, the system is trapped in o
of the two phases for a ‘‘time’’ that grows exponential
with N @9# and thus a fictitious symmetry breaking is o
he
of

s
to

er
n-
al

-

c-

a

s

w

e
n.
tly
ut
e

ge

-
e

served at a temperatureTc
w(N). This temperature, in genera

does not coincide withTc
CV(N), even if

lim
N→`

Tc
CV~N!5 lim

N→`

Tc
w~N!5Tc

` . ~20!

In the microcanonical ensemble ergodicity breaking may
cur also at finiteN, hence we can expect that a ‘‘true’’ criti
cal energy exists also at finiteN. No rigorous theoretical
result is at our disposal regarding this aspect. Neverthel
on the basis of asymptotic equivalence of statistical
sembles, the behavior of microcanonical thermodynam
functions is reasonably expected to be similar to the can
cal case, at least asN is sufficiently large. Indeed, this is
what is observed, as we shall see in the following. In p
ticular, we expect the specific heat to exhibit a peak a
critical energy density that is a function ofN.

In the framework of the statistical theory of critical ph
nomena, by means of the finite-size scaling analysis@20,21#,
the critical properties of the infinite system are inferred fro
the values of the thermodynamic observables in fin
samples of different sizes. In particular, it is possible to
cate the critical point by means of the so-calledBinder cu-
mulants@20#. The Binder cumulantg that we have computed
for our systems is defined as

g512
^w4&

3^w2&2
, ~21!

where

^w2n&5K S (
a

^w&a
2 D nL , ^w&a5(

i
w i

a .

In the disordered phase the probability distribution of t
order parameter will be nearly Gaussian with zero me
henceg.0. At variance to this, at zero temperature~or en-
ergy!, whenw i[w0 with no fluctuations,g52/3. At differ-
ent sizes of the system,g will decay following different pat-
ternsg(N,T) from 2/3 to 0 at increasing temperature. Th
remarkable fact is that the value ofg at Tc

` is independentof
N, providedN is large enough for the scaling regime to s
in; hence the critical point can be located by simply looki
at the intersection of the different curvesg(N,T) for differ-
ent values ofN. In principle, two different sizes are sufficien
to locate the transitions; in practice, owing to the unavo
able numerical errors that affectg, it is necessary to conside
at least three values ofN. Moreover, the value ofg at the
critical point, usually referred to asg* , is a universal quan-
tity, like the critical exponents; for a simple proof see, e.
Ref. @21#. The importance of the Binder cumulant method
not only that it allows one to easily locate the critical tem
perature, without the need of an extrapolation of t
asymptotic behavior of the fictitious finite-N critical tem-
peratures, but also that such an estimate ofTc

` is independent
of the other thermodynamic observables such as^w& or CV ,
and this is obviously a great advantage in determining
actual critical behavior, in particular the critical exponen
Moreover, one can regard the existence of a crossing of
ferent curvesg(N,T) as a ‘‘proof’’ for the existence of a
phase transition in the system under investigation. This m
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be useful in various cases where the presence of singula
in the thermodynamic functions or the existence of a nonz
order parameter is difficult to observe~e.g., this is the case o
spin glasses@22#!.

The theory behind the Binder cumulant method is tota
internal to canonical statistical mechanics: To our know
edge, no extension of this theory to themicrocanonicalen-
semble exists. Nevertheless, we will adopt the pragm
point of view of assuming its validity as a numerical to
also in our dynamical simulations, and our operative defi
tion of the critical energy density«c

` will be the intersection
point of the curvesg(N,«) at differentN. The consistency of
the method will be checkeda posteriori. In the following,
unless explicitly stated otherwise,«c and Tc will denote,
respectively,«c

` andTc
` .

The results forg(N,«) at different sizes for thew4 lattice
models are shown in Figs. 1~a!–1~c!. The crossing of the
various curves at«c.31 for the O(1) model is quite eviden
and similarly at«c.44 for the O(2) model and at«c.56 for
the O(4) model.

Such estimates of the critical energy densities are o
ously far from being extremely accurate. However, we
mainly interested in showing that the dynamical pheno
enology is actually consistent with the existence of an eq
librium phase transition at finite energy density and the v
ues of «c are needed to understand whether or not
singular ~or, more generally, peculiar! behaviors of the ob-
servables,~either thermodynamical, strictly dynamical, o
geometric ones! that we are going to study can be associa
with the phase transition.

2. Temperature

The temperature of thew4 systems, numerically deter
mined according to Eq.~17!, is plotted in Fig. 2 as a function
of the energy density«. Note that for all the models a chang
of the functionT(«) is clearly evident at«5«c .

By plotting the Binder cumulants vs the temperatureT,
the critical valuesTc are obtained for all the models and a
found in complete agreement with the outcomes of theT(«)
curves. These values areTc.35 for the O(1) model,Tc
.25 for the O(2) model, andTc.16 for the O(4) model.

3. Specific heat

The specific heatc
V
5CV /Nn per degree of freedom o

the w4 models here considered, computed according to
~19!, is plotted vs the temperature in Fig. 3. The asympto
values of the specific heat in the limitsT→0 andT→` are
exactly known. In fact, at low energies the anharmonic ter
in the Hamiltonian can be neglected, thus the system beh
as a collection af harmonic oscillators andc

V
→1 asT→0.

In the high-energy limit the quadratic terms in the poten
are negligible with respect to the quartic ones, whencec

V

→1/211/453/4 asT→`. At intermediate energy densitie
neat peaks show up whose positions are close toTc for each
model respectively. The heights of the peaks are found
grow with N and to decrease withn.

4. Dynamical properties

We have shown that the outcomes of the dynamical
merical simulations of the scalar and vector versions of
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lattice w4 model are perfectly consistent with the expec
tions of the effects of a second-order phase transition o
finite sample. As already motivated above, this first resul
nontrivial. Up to now its content is that, for all practica
purposes, a dynamical simulation is actually equivalent t
microcanonical one, so that, at sufficiently largeN, the re-
sults are in natural agreement with canonical statistical m
chanics. All these results concern time averages: The t
variable, even if not eliminated from the very beginning as
the statistical approach, has been nonetheless integrate
in the averaging procedure. However, we can also won
what are the properties, if any, that are peculiar to the
namics and that can be considered relevant to the descrip

FIG. 1. Binder cumulantsg(N,«) vs energy density« at differ-
ent valuesN of the lattice sites for~a! the O(1) case,~b! the O(2)
case, and~c! the O(4) case. Open circles refer toN543434, full
triangles refer toN563636, and full circles refer toN583838.
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57 3891GEOMETRY OF DYNAMICS AND PHASE TRANSITIONS . . .
of the phase transition itself. Moreover, we have already
ticed that the phenomenon of ergodicity breaking has a d
dynamical origin; therefore, we can try to understand w
features are associated with a Hamiltonian ergodicity bre
ing.

The lattice w4 models under investigation are nonint
grable dynamical systems. In the two limits«→0 and«→`,
these systems become integrable. The two integrable li
are, respectively, those of a system of coupled harmonic
cillators and of a system of independent quartic oscillato
The dynamics is always chaotic over the whole ene
range. Nevertheless, in analogy to other nonlinear oscill
systems, by varying the energy we expect that qualitativ
different dynamical regimes will be found, characterized
a transition between different behaviors of the larg
Lyapounov exponentl1 as a function of energy density o
equivalently, temperature. This phenomenon is attributed
a dynamical transition between weak and strong chaos;

FIG. 2. TemperatureT ~twice the average kinetic energy pe
particle! plotted vs energy density«. Results of the O(1), O(2),
and O(4) models are represented by full circles, open circles,
open triangles, respectively. Temperatures and energy densiti
each model are scaled by the corresponding critical values obta
by means of Binder cumulants. The dashed line is a guide to
eye. Lattice sizeN583838

FIG. 3. Specific heat per degree of freedom vs scaled temp
tureT/Tc . cV5CV /Nn andCV is computed according to Eq.~19!.
Symbols: full circles, O(1); open circles, for O(2); andopen tri-
angles, O(4). Lattice sizeN583838.
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known as the strong stochasticity threshold and is discus
in Refs.@23,24#. In particular, the following questions natu
rally arise. Is there any peculiar behavior of the Lyapoun
exponent in correspondence with the phase transition?
there a transition between strongly and weakly chaotic
gimes also in these models and, in the affirmative case
there any relationship between these different dynamical
gimes and the thermodynamic phases?

We must say from the very beginning that there are
yet conclusive answers to these questions. The study
possible relation between chaos and phase transitions
very recent issue@25# and the results obtained so far an
reported in the literature range from the claim of the disco
ery of a ‘‘universal’’ divergence inl1 near criticality in a
class of models describing clusters of particles@26# to the
observation that the Lyapounov exponent attains its m
mum in correspondence with the phase transition in Isi
like coupled map lattices@27# and to the apparent insensitiv
ity to the liquid-solid phase transition of the Lyapouno
spectra of hard-sphere and Lennard-Jones systems@28#.

Our simulation results are plotted in Figs. 4 and 5. T
O(1) case has been studied more extensively than the o
because of practical reasons of computational effort@for ex-

nd
of

ed
e

a-

FIG. 4. Largest Lyapounov exponentl1 plotted vs temperature
for the O(1) model. A ‘‘nonsmooth’’ feature atT5Tc is evident.
Lattice sizeN583838.

FIG. 5. Synopsis ofl1(T) obtained for the O(1) model~full
circles!, the O(2) model~open circles!, and the O(4) model~open
triangles!. Lattice sizeN583838.
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ample, single runs for the O(4) model usually required
least two weeks of CPU time on a fast Hewlett-Pack
9000/735 computer#.

The first numerical evidence is that in presence o
second-order phase transition a rather sharp and ‘‘cuspli
transition between different behaviors ofl1(T) is found at
Tc ~where the critical valuesTc are those determined b
means of Binder cumulants!. Moreover, the qualitative be
havior ofl1(T) appears very different in the thermodynam
cally ordered and disordered regions, respectively. In fac
the former regionl1 rapidly increases withT, whereas in the
latter regionl1(T) displays an almost flat pattern aboveTc

@note thatl1(T) is expected to change again at very largeT
because the dynamics is asymptotically integrable in
limit T→`; this effect has been numerically checked at ve
high temperatures and is clearly evident in Fig. 4, for
O(1) case, atT/Tc;104#. This suggests that the phase tra
sition has a dynamical counterpart in a passage from
weakly to a strongly chaotic regime.

It is remarkable that the shape ofl1(T) is significantly
different in the presence or absence of a second-order p
transition. In fact, in the case of one-dimensional lattic
with short-range interactions, where no phase transition
present,l1(T) has a very smooth pattern~see Ref.@8#!. This
fact has been checked more specifically for thew4 model by
computing l1(T) for the O(2) symmetry case on a two
dimensional lattice; as a consequence of the Mermin-Wag
theorem, here a second-order phase transition is forbid
and in fact this model undergoes an infinite-ord
~Kosterlitz-Thouless-Berezinsky! phase transition. The shap
of l1(T) again displays a major change so that the low- a
high-temperature regimes are very different. However,
transition between these two regimes is now smooth@29#.

It is worth emphasizing that the average of alocal prop-
erty of microscopic dynamics, the average instability m
sured byl1, is sensitive to acollectivephenomenon such a
a second-order phase transition.

It could be argued that in the critical region almost a
‘‘honest’’ observable will show peculiar behavior and th
this reflects the tendency of the statistical measure to bec
singular at the transition point, regardless of the ensem
chosen. In the framework of equilibrium statistical mecha
ics this is certainly true because the Gibbs measure is
fundamental mathematical object upon which everything
lies. In the thermodynamic limit also the microcanonic
measure, which is the invariant measure of the microsco
Hamiltonian dynamics, will have to become singular. Ho
ever, the microcanonical measure is not the ultimate m
ematical entity that can be considered, so that the Ha
tonian dynamics approach gives meaning to the questio
the possible existence of amore fundamentalphenomenon a
the very ground of a phase transition.

Lyapounov exponents provide the necessary link to s
unexplored land. The details on this point are given in
next section, where we recall how the geometrization
Hamiltonian dynamics proceeds in the language of Riema
ian geometry and how average geometric properties of s
suitable manifold directly influence the average dynami
instability quantified byl1.
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III. GEOMETRY OF THE DYNAMICS
AND THE PHASE TRANSITION

Let us sketch the main points of the Riemannian theory
chaos in physical systems; details can be found in Refs.@3–
8#.

A. Riemannian geometrization of Newtonian dynamics

The trajectories of a dynamical system described by
Lagrangian function

L~q,q̇!5
1

2
aik~q!q̇i q̇k2V~q! ~22!

are geodesics of the configuration space endowed wit
proper Riemannian manifold structure described by the m
ric tensor

gik~q!52@E2V~q!#aik~q!. ~23!

This metric is known as Jacobi metric and is defined in
region of the configuration space whereE.V(q). In local
coordinates, the geodesic equations on a Riemannian m
fold are given by

d2qi

ds2 1G jk
i dqj

ds

dqk

ds
50, ~24!

wheres is the proper time andG jk
i are the Christoffel coef-

ficients of the Levi-Civita connection associated withgik ,
i.e., G jk

i 5(1/2W)d im(] jWdkm1]kWdm j2]mWd jk), where
W5E2V(q); proper time and physical time are related
ds252W2dt2. By direct computation, usinggik5@E
2V(q)#d ik , it can be easily verified that the geodesic equ
tions yield

d2qi

dt2
52

]V

]qi
, ~25!

i.e., Newton’s equations associated with the Lagrangian~22!.
These equations can be also derived as geodesics of a m
fold consisting of an enlarged configuration space-ti
M3R2, with local coordinates (q0,q1, . . . ,qi , . . . ,qN,
qN11). For such a purpose this space is endowed wit
nondegenerate pseudo-Riemannian metric, introduced
Eisenhart@30#, whose arclength is

ds25gmndqmdqn5ai j dqidqj22V~q!~dq0!212dq0dqN11,
~26!

calledEisenhart metric. The natural motions are obtained a
the canonical projection of the geodesics of (M3R2,gE) on
the configuration space-timep:M3R2°M3R. Within the
totality of geodesics only those whose arclength is posit
definite and is given byds25c1

2dt2 correspond to natura
motions, which is equivalent to requiring the conditio
qN115 1

2 c1
2t1c2

22*0
t Ldt for the extra coordinateqN11

@3,4#; c1 andc2 are real arbitrary constants.
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B. Curvature and instability of geodesic motions

There is an important relation between the curvature o
manifold and the stability of its geodesics. It is described
the Jacobi–Levi-Civita~JLC! equation for thegeodesic sepa
ration vector field J(s).

The evolution ofJ contains all the information on th
stability, or instability, of a given reference geodesicg(s). In
fact, if uJu grows exponentially, then the geodesic will b
unstable in the Lyapounov sense; otherwise it will be sta
It is remarkable that such an evolution is completely de
mined by the Riemann curvature tensorRjkl

i according to the
JLC equation

¹2Ji

ds2
1Rjkl

i dqj

ds
Jk

dql

ds
50, ~27!

where¹/ds is the covariant derivative.
In the large-N case, under suitable hypotheses@7,8#, it is

possible to derive a scalar effective stability equatio
Briefly, among others, the main assumptions are that~i! the
ambient manifold isalmost isotropic, which essentially
means that, after some suitable coarse graining, the am
manifold would look like a constant curvature manifold, a
~ii ! the curvature felt along an unstable geodesic can be
sonably modeled by a Gaussian stochastic process. The
result is@8#

d2c

ds2 1^kR&mc1^d2kR&m
1/2h~s!c50, ~28!

where c denotes any of the components ofJ in Eq. ~27!
because now all of them obey the same effective equatio
motion; ^kR&m5(1/N)^KR&m , whereKR is the Ricci curva-
ture of the ambient manifold:KR5Rikq̇i q̇k and Rik5Ri jk

j ;
^ &m stands for microcanonical average and^d2kR&m is
shorthand for@1/(N21)#^d2KR&m , the mean-square fluctua
tion of the Ricci curvature;h(s) is a Gaussiand-correlated
random process of zero mean and unit variance.

Equation~28! is a scalar equation that,independently of
the knowledge of dynamics, provides a measure of the ave
age degree of instability of the dynamics through the grow
rate ofc(s). The peculiar properties of a given Hamiltonia
system enter Eq.~28! through the global geometric prope
ties^kR&m and^d2kR&m of the ambient Riemannian manifold
Moreover,^kR&m and^d2kR&m are functions of the energyE
of the system, and of the energy density«5E/N as well,
which is the relevant quantity atN→`, so that from Eq.~28!
we can obtain the energy dependence of the geometric in
bility exponent.

Equation~28! is of the form

d2c

ds2 1V~s!c50, ~29!

representing a stochastic oscillator where the squared
quencyV(s) is a stochastic process; the derivation of th
equation does not depend on a particular choice of the m
ric. For Hamiltonian systems with a diagonal kinetic ener
matrix, i.e.,ai j 5d i j , by choosing as the ambient manifo
for the geometrization of dynamics the enlarged configu
a
y
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tion space-time equipped with the Eisenhart metric~26!, it is
found that the only nonvanishing component of the Ri
tensor isR005nV; thus Ricci curvature is a function of th
coordinatesqi only and one haskR(q)5nV/N. Using dt2

5ds2, the stochastic oscillator equation~29! can be written

d2c

dt2
1V~ t !c50, ~30!

where the mean and variance ofV(t) are given by

V05^kR&m5
1

N
^DV&m , ~31!

sV
2 5^d2kR&m5

1

N
@^~DV!2&m2^nV&m

2 #. ~32!

The processV(t) is specified byV0, sV
2 , and its time cor-

relation functionGV(t1 ,t2). We consider a stationary an
d-correlated processV(t) with GV(t1 ,t2)5tsV

2 d(ut22t1u),
where t is a characteristic time scale of the process.
present the evaluation of this time scale is still a rather d
cate point, where some arbitrariness enters the theory. In
@8# these two time scales are defined by

t15 K dt

dsL p

2AV01sV

, t25 K dt

dsL V0
1/2

sV
, ~33!

which are combined to givet as

t2152~t1
211t2

21!. ~34!

As we shall see below, at low temperatures this form
seems to predict a satisfactory temperature dependencet;
in fact, by adjusting a constant factor that multipliest1, the
theoretical prediction ofl1(T) is in very good agreemen
with numerical computations. At high temperatures we ha
to take care of the fact thatV0 andsV are both increasing
functions ofT, even though the system approaches an in
grable limit.

WheneverV(t) in Eq. ~30! has a nonvanishing stochast
component, the solutionc(t) is exponentially growing on
the average@31#. Our estimate for the~largest! Lyapounov
exponent is then given by the growth rate ofi(c,ċ)(t)i2

according to the definition

l15 lim
t→`

1

2t
ln

c2~ t !1ċ2~ t !

c2~0!1ċ2~0!
. ~35!

The ratio @c2(t)1ċ2(t)#/@c2(0)1ċ2(0)# is computed
by means of a technique developed by Van Kampen, s
marized in Ref.@8#, which yields

l1~V0 ,sV ,t!5
1

2S L2
4V0

3L D ,

L5F2sV
2 t1AS 4V0

3 D 3

1~2sV
2 t!2G1/3

. ~36!
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The quantitiesV0, sV , andt can be computed as static, i.e
microcanonicalaverages. Therefore, Eq.~36! gives an ana-
lytic, though approximate, formula for the largest Lyapoun
exponent independently of the numerical integration of
dynamics and of the tangent dynamics.

C. Geometric signatures of the phase transition

As already noted above, on the one hand, the larg
Lyapounov exponent is sensitive to the phase transition
the other hand, in the Riemannian description of chaos,l1 is
intimately related to the average curvature properties of
mechanical manifolds. These quantities are computed a
tegrals on manifolds just like other statistical quantities
thermodynamic kind. This means that by means
statistical-mechanical-like computations we can obtain n
trivial information about dynamics. Hence the followin
questions arise: Is there any peculiarity in the geome
properties associated with the dynamics of systems tha
statistical systems in thermal equilibrium, exhibit a pha
transition? In particular, do the curvature fluctuations sh
any noticeable behavior in correspondence with the ph
transition itself?

Results of the computations

Let us now report on the results of the the computation
the geometric properties of the mechanical manifo
sampled by the numerical geodesics. For thew4 models, the
Ricci curvature per degree of freedom along a geodesi
(M3R2,gE) is given by

kR5
1

Nn(
a51

n

(
i

]2V

]~w i
a!2

52Jd2m21l
n12

Nn (
a51

n

(
i

~w i
a!2.

~37!

High- and low-temperature behaviors of this quantity can
easily derived. In the limitT→0 we can replace, at any sit
i of the lattice,iw i

ai25(a51
n(w i

a)2 with the constant value
w0

25m2/l; this value is obtained by minimizing the potenti
part of the Hamiltonian~5!. Hence, for a generic O(n) case,
we have

lim
T→0

kR5
2

n
~Jdn1m2! ~38!

and with the values we chose for the constants (J51, m2

52, d53, andl50.1) it is kR510 in the O(1) case,kR
58 in the O(2) case, andkR57 in the O(4) case, respec
tively. These values are in agreement with our numer
findings, as shown in Fig. 6, wherek(T)5@^kR& t(T)
22Jd#/@^kR&t(T50)22Jd# is synoptically displayed for all the
models; the averagê & t is defined in Eq.~10!. At low tem-
perature^kR& t(T) only slightly deviates from its limiting
zero-temperature value, as shown in Fig. 7; this fact is in
itively interpreted as a sign of a weakly chaotic dynamics

Also in the opposite limitT→`, these systems are aga
integrable. In fact, for increasing temperature the variab
w i

a become larger and larger so that the Hamiltonian~5!
describes a collection of quartic oscillators that are less
e
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less perturbed by the quadratic coupling term. In this lim
the canonical partition function is factored in terms of fun
tions of the form

E
0

`

dxxne2axa
5

1

a
GS n11

a Da2~n11!/a, ~39!

with n50, whereG(x) is the Euler Gamma function. Henc
the canonical average of any even powern of the field is

^~w i
a!n&5S bl

4 D 2n/4GS n11

4 D
GS 1

4D ~40!

and vanishes for any odd powern.

FIG. 6. Reduced average Ricci curvaturek5(^kR&
22Jd)/@^kR(T50)&22Jd# vs T/Tc . The Ricci curvature is so
reduced in order to facilitate the comparison between the diffe
models. Symbols: full circles, O(1); open circles, for O(2); and
open triangles, O(4). Lattice sizeN583838.

FIG. 7. O(1) model. The average Ricci curvature^kR& is plotted
vs T for a wide temperature range. The dashed horizontal line r
resents the integrable limit behavior of^kR&(T) predicted by Eq.
~38! and actually attained at low temperature by the average R
curvature computed for the O(1) model according to Eq.~37!. The
solid line represents the high-temperature asymptotic behavio
^kR&(T) predicted by Eq.~41!, again pertaining to the integrabl
limiting behavior of the model.
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From Eqs.~37! and ~40! we find a canonical estimate o
^kR&m that differs from the microcanonical one byO(1/N)
terms

^kR&m;2Jd2m21

2~n12!GS 3

4DAl

GS 1

4D AT1OS 1

ND .

~41!

This prediction is compared to the numerically compu
values of^kR& t(T) in Fig. 7; at very high temperature th
agreement is very good.

In order to compute the average curvature fluctuati
^d2kR&m , we first notice that

^d2kR&5^kR
2&2^kR&25l2S n12

Nn D 2H K S (
i

iw ii2D 2L
2S (

i
^iw ii2& D 2J ~42!

and, as in the large-T limit we consider all thew i
a decoupled,

we find

^d2kR&5l2~n12!2$^~w~ i!
a !4&2^~w~ i!

a !2&2%, ~43!

wherew ( i)
a denotes any representative of the now indep

dent degrees of freedom. The Gibbsian, canonical averag
the T→` limit is now easily found to be

^d2kR&G;H G~5/4!

G~1/4!
2FG~3/4!

G~1/4!G
2J ~n12!24lT. ~44!

In order to compare the predictions of Eq.~44! with our
numerical results and also in order to use it in the anal
prediction of the Lyapounov exponent, we have to take i
account the correction that relates canonical and micro
nonical averages@31# which now reads

^d2kR&m5^d2kR&G2
b2

CV
S ]^kR&

]b D 2

. ~45!

The high-temperature partition functionZ is obtained by
raising to theNnth power the integral*dwexp@2b(l/4)w4#
;b21/4. Then, using F52(1/Nnb)lnZ and CV5
2T(]2F/]T2), we findc

V
→1/4. This is in very good agree

ment with our numerical results for the high-temperature v
ues ofc

V
; this is somehow less clear in the O(4) case

causec
V

was computed only in the transition region. Fro
Eqs.~45! and ~44! we can now obtain the final result

^d2kR&m;H G~5/4!

G~1/4!
22FG~3/4!

G~1/4!G
2J ~n12!24lT. ~46!

In Fig. 8 we report the temperature dependence of the t
average of the Ricci curvature fluctuationssV(T)
[^d2kR& t . In Fig. 9 we also give a comparison ofsV with
the prediction of Eq.~46! for the O(1) model.

The common feature of the three models is that a cusp
~singular! behavior of the curvature fluctuations is observ
d
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in correspondence with the phase transition. Moreover, c
vature fluctuations display a very smooth energy density
pendence, or a temperature dependence as well, in those
tems where no finite-order phase transition is present~see
Ref. @8#!. In Fig. 10 we report alsosV(T) in the case of a
two-dimensional~2D! w4 model with O(2) symmetry; in
this case a second-order phase transition is forbidden
actually the system undergoes a Kosterlitz-Thouless ph
transition. The cusplike behavior of curvature fluctuatio
has now disappeared andsV(T) is a monotonically increas
ing function of T; visibly, something still happens at th
transition point (Tc.1.5), so that this case appears to
‘‘intermediate’’ between no phase transition at all and
second-order phase transition. Similar results have b
found for planar 2D and 3D classical Heisenberg mod
@29,32# and in a preliminary investigation of the dual~gauge!
version of the Ising model in three dimensions@33#: The
cusplike behavior of the curvature fluctuations always sho
up when a second-order phase transition is present and
singular point is located at the critical temperature, with
the numerical accuracy.

In the light of the Riemannian description of Hamiltonia

FIG. 8. Average Ricci curvature fluctuationssV vs T/Tc . The
‘‘cusp-like’’ behavior is evident atT.Tc . Shown from top to bot-
tom are the O(4), O(2), and O(1)results. The cusp appears t
soften at increasing dimensionn of the symmetry group O(n).

FIG. 9. Average Ricci curvature fluctuationssV vs T for the
O(1) model reported for a wide range of temperature. The solid
represents the high-temperature asymptotic value given by
~46!.
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chaos given above, we understand why the temperature
pendence of the largest Lyapounov exponentl1 is so pecu-
liar near and at the critical temperature~see Figs. 4 and 5!:
l1(T) reflects the cusplike pattern ofsV(T) nearTc . In Sec.
III D we make a conjecture about the deep meaning of th
singular behaviors shown byl1(T) andsV(T).

As the invariant measure for an autonomous Hamilton
flow is the microcanonical measure on the constant ene
surfaces of phase space, our numerical computations of^kR& t
and ^d2kR& t are good estimates of the quantitiesV0(T) and
sV(T), i.e., microcanonical averages, that enter Eqs.~33!
and ~36!. The analytic computation ofl1(T) by means of
these formulas yields an unsatisfactory result that overe
matesl1(T) at low temperatures~though the temperatur
dependence is correct! and that steeply increases at high te
peratures instead of saturating~before decreasing again a
extremely highT). The high-temperature result appears p
ticularly bad; however, this is only due to the asympto
growth with T of both ^kR& and ^d2kR&, given by Eqs.~41!
and ~46! and confirmed numerically, which has no spec
meaning for dynamical instability. The estimate of the de
rrelation time scale of curvature fluctuations along the g
desics is still somehow rudimentary in the Riemann
framework outlined above; therefore, one expects that so
improvement is needed on this point. As a matter of fact, i
possible to substantially improve the theoretical predictio
by simply multiplying the decorrelation time scalet of Eq.
~34! by a constant factor that is model dependent and dif
ent below and aboveTc . Moreover, at high temperatures,
computingt1 and t2 given in Eq.~33!, we have subtracted
from V0(T) and sV(T) their respective asymptotic beha
iors given by Eqs.~41! and~46!. The analytic predictions for
l1(T) are now in very good agreement with numeric resu
with the exception of the critical region, where something
apparently still lacking. The results are reported in Figs. 1
13, where it is evident that the best agreement betw
theory and numerical experiments is obtained in the O
case; very good agreement is still present at low temp

FIG. 10. Average Ricci curvature fluctuationssV vs tempera-
ture for the O(2) model on a square lattice (d52) of N530330
sites. The cusp is now absent andsV(T) is a monotonical increas
ing function. AroundT.1.5, on the basis of the temperature b
havior of other observables, the system is supposed to under
Kosterlitz-Thouless phase transition and, correspondingly, we
observe a change in the shape ofsV(T). Here J51, l54, and
m2510.
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tures for the O(2) model and it becomes poorer in the O~4!
model. The comparison atT.Tc suffers, in the cases o
O(2) and O(4), a restricted range of temperature values~we
focused our attention only on the transition region becaus
the problems already mentioned! where subtracting from
V0(T) and sV(T) their asymptotic values is less meanin
ful.

However, it is not out of place to remind the reader th
the theoretical computation of Lyapounov exponents is no
routine task at all and that the approach reported here i
present the only theoretical method available to cope w
the computation ofl1. What is important here is that with
some simple and reasonable adjustment the analysis ske
above still applies and yields good results. Refinements
the geometrical theory of chaos are beyond the aim of
present work; rather we are interested in using it as it is
present to get a hold of the deep origin of the peculiarities
the dynamics at a phase transition.

a
n

FIG. 11. Numerical largest Lyapounov exponentl1 ~open
circles! plotted vsT for the O(1) model and compared to the an
lytic prediction of Eq. ~36! ~full circles!. The vertical solid line
marks the transition temperature. The correlation time scalet is
given by Eq.~34!; t is rescaled by a constant factor equal to 0.65
T,Tc and by a factor 1.1 atT.Tc .

FIG. 12. Numerical largest Lyapounov exponentl1 ~open
circles! plotted vsT for the O(2) model and compared to the an
lytic prediction of Eq.~36! ~full circles!. The vertical dashed line
marks the transition temperature. Heret is rescaled by a constan
factor equal to 3 atT,Tc and by a factor 0.7 atT.Tc .
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D. A topological conjecture

We shall now try to grasp the possible significance of
above-reported cusplike, and thus possibly singular, beha
of the curvature fluctuations at the transition point for thew4

lattice systems. As a first step toward this goal we shall try
reproduce such a peculiar behavior of curvature fluctuati
in abstract geometric models. A preliminary step in this
rection was already presented in Ref.@29#, applied to the
case of planar spin models.

The choice of a geometrictoy modelstems from the fol-
lowing considerations. Weakly and strongly chaotic geode
flows can ‘‘live’’ on homologically trivial manifolds, i.e., on
manifolds that are diffeomorphic to anN sphere. In other
words, nontrivial topology is not necessary to make cha
conversely, a sudden topological change in a family of ma
folds can abruptly affect their geometric properties and
degree of chaos of geodesic flows. Therefore, let us cons
for instance, the two families of surfaces of revolution im
mersed inR3 defined as

F«5@ f «~u!cosv, f «~u!sinv,u#, ~47a!

G«5@u cosv,u sinv, f «~u!#, ~47b!

where

f «~u!56A«1u22u4, «P@«min ,1`!, ~48!

and «min52 1
4. Some members of the two families are d

picted in Fig. 14. In both cases there exists a critical value
the parameter«, «c50, corresponding to a change in th
topologyof the surfaces. In particular, the manifoldsF« are
diffeomorphic to a torusT2 for «,0 and to a sphereS2 for
«.0. In the other case, one has instead a change in
number of connected components: The manifoldsG« are dif-
feomorphic totwo spheres for«,0 and to one sphere fo
«.0. Computing the Euler-Poincare´ characteristicx one

FIG. 13. Numerical largest Lyapounov exponentl1 ~open
circles! plotted vsT for the O(4) model and compared to the an
lytic prediction of Eq. ~36! ~full circles!. The vertical solid line
marks the transition temperature. Heret is rescaled by a constan
factor equal to 5.5 atT,Tc and by a factor 0.6 atT.Tc .
e
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finds x(F«)50 if «,0 and x(F«)52 otherwise, while
x(G«)5 4 or 2 when« is respectively negative or positive
Let us now compute the« dependence of the average curv
ture properties of these surfaces as«→«c . Let M belong to
one of the two families under investigation. The Gauss
curvatureK is given by@34#

K5
x8~x9y82x8y9!

y~x821y82!2 , ~49!

where the functionsx(u) andy(u) represent the coefficient
of the general formM (u,v)5@y(u)cosv,y(u)sinv,x(u)# of
parametrized surfaces of revolution and the prime deno
differentiation with respect tou. Now the fluctuations ofK
are computed as

s25^K2&2^K&25A21E
M

K2dS2S A21E
M

KdSD 2

,

~50!

where A is the area ofM and dS is the invariant surface
element. Both families of surfaces, in spite of having ve
different curvature properties on the average@for instance,
^K&(«)50 in theF« case as«,0, while the same averag
curvature is positive and diverging as«→0 for G«#, exhibit a
singular behavior in the curvature fluctuations as«→«c , as
shown in Fig. 15.

These results suggest, at a heuristic level, that, from
point of view of the geometric description of the dynamics
phase transition might correspond to atopology changein
the manifold underlying the motion. The relevance of top
logical concepts for the theory of phase transitions has b
emphasized already~see Ref.@35#!, though in a more ab-
stract context. Here we suggest that topological aspect
phase transitions might also concern the manifolds that
‘‘just behind’’ dynamics and not only those deep mathema
cal objects that are involved in Ref.@35#. In our opinion this
subject deserves further investigation to go beyond the h
ristic level. In fact, the study of dynamics and of its geom
ric and topologic counterparts could eventually lead to a b

FIG. 14. Some representatives of the two families of surfacesFe

andGe defined in Eqs.~47a! and~47b!, respectively. Each family is
divided into two subfamilies by the critical surface corresponding
ec50 ~middle members in the picture!. Members of the same sub
family are diffeomorphic, whereas the two subfamilies are not d
feomorphic between them.
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ter understanding of the nature of ergodicity breaking a
thus of the very nature of phase transitions.

IV. CONCLUDING REMARKS

Let us now summarize the main points of the pres
work and comment on their meaning. By studying so
classical latticew4 models that undergo second-order
Kosterlitz-Thouless phase transitions, it has been found
the natural microscopic dynamics, derived from the Ham
tonian functions of these systems, clearly reveals the p
ence of the phase transition. The invariant measure of Ha
tonian dynamics is the microcanonical measure, equival
in the thermodynamic limit, to the canonical measure tha
sampled by usual Monte Carlo algorithms. Therefore, o
could argue that it is not surprising that Hamiltonian dyna
ics yields the same results of a Monte Carlo stochastic
namics. As a matter of fact, using Hamiltonian dynamics j
to sample the microcanonical measure would not be so in
esting, whereas the important point raised by the pres
work is that Hamiltonian dynamics brings about differe
observables and a different framework to tackle phase t
sitions. Mainly Lyapounov exponents are the different o
servables intrinsic to the dynamics and the different
geometric treatment of dynamical instability is the differe
framework. In addition to thermodynamic observables,
namic and geometric observables are sensitive to a sec
order phase transition that can be recognized through t
peculiar ‘‘nonsmooth’’ behaviors. The common wisdom
phase transitions suggests that nonsmooth behaviors of
observable are expected near the transition point, as a

FIG. 15. Second moment of the Gaussian curvature of the
facesFe andGe plotted vse. s is defined in Eq.~50!; e is shifted by
emin50.25 ~see the text! for graphical reasons.~a! refers toGe and
~b! refers toFe . The cusps appear ate50 where the topologica
transition takes place.
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sequence of the tendency of the measure to become sin
at T5Tc in the limit N→`. In the light of our results we
suggest that a deeper explanation might be possible: A m
topological change of the mechanical manifolds could be
common root of the peculiar behaviors of both dynamic a
thermodynamic observables in presence of a phase tra
tion. Here topology is meant in the sense of de Rham’s
homology.

On a purely phenomenological ground it might be surpr
ing that the largest Lyapounov exponent, which measure
averagelocal property of the dynamics, is sensitive to acol-
lective, and therefore global, phenomenon such as a ph
transition. In fluids, for example, it is evident that molecul
chaos has nothing to do with the macroscopic patterns of
velocity field. It is even possible to have chaotic motions
fluid droplets~Lagrangian chaos! in the presence of regula
Eulerian velocity fields~i.e., in laboratory reference frame!.

However, within the Riemannian framework outlined
the previous sections, Lyapounov exponents appear tig
related to the geometry of the mechanical manifolds, a
geometry dramatically changes in the presence of a m
change of topology. Thus our topological conjecture see
to naturally account for this, at first sight counterintuitiv
sensitivity of the largest Lyapounov exponent to a mac
scopic collective phenomenon.

It is worth mentioning here that, to the best of our know
edge, there is only another framework where Lyapounov
ponents can be, at least in principle, analytically comput
This is a field-theoretic framework, already mentioned in t
Introduction @13–15#, based on a path-integral formulatio
of classical mechanics, where Lyapounov exponents are
as expectation values of suitable operators. There are m
interesting points in this framework that could probably r
veal a fertile relationship with the Riemannian geometric a
proach that is behind our present work. Let us mention so
of them. Ergodicity breaking, which, as we discussed in
Introduction, is a more general concept than symme
breaking, in the field-theoretic context appears to be rela
to a supersymmetry breaking; moreover, this supersymm
breaking can occur also at finiteN @13#. Lyapounov expo-
nents turn out to be related to mathematical objects that h
many analogies with definitions and concepts of de Rha
cohomology theory@15#, which might be useful in future
investigations about the relation between Lyapounov ex
nents and topology at a phase transition.

In conclusion, we believe that the dynamic approach,
addition to the conceptual aspects mentioned above, c
contribute to complement the standard approaches of st
tical mechanics to the description of phase transitions an
is hoped that it be particularly helpful in those cases wh
these standard methods may encounter some difficulty, a
the case of disordered and frustrated systems, polymer
the continuum, and lattice gauge theories where
symmetry-breaking transition occurs.
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